Monday, August 25, 2025

Polaris of Enlightenment

Deep-sea mountains thought to be home to 20 undiscovered species

Biodiversity

Published 14 September 2024
– By Editorial Staff
Two of the findings - a Promachoteuthis squid and a crustacean of the genus Sternostylus.
3 minute read

About 100 miles off the coast of Chile, scientists have discovered a seamount with what they describe as completely “pristine ecosystems” and believe it to be home to at least 20 previously unknown species.

It is hoped that the area and its fauna will be further explored and also protected from pollution, commercial fishing and mining.

The team mapped a 1.9-mile high seamount, which is part of the Nazca Ridge, a seamount chain in the southeast Pacific Ocean.

The potentially new species, not yet officially confirmed, include a sea urchin, starfish and a lobster. The results will be submitted to the Ocean Census which promotes the discovery of new marine species – but a full identification of the species is expected to take several years.

The researchers also documented rare sightings of Casper squid and two rare species of bathyphysa siphonophores, also known as flying spaghetti monsters. They also managed to take pictures of a live octopus that had previously only been studied from a few dead samples.

“Puts focus on the unknown seabed”

The discoveries are the result of a 28-day expedition to the understudied Nazca Ridge, led by the Schmidt Ocean Institute. Prior to this mission, the exact height and location of the ridge was unknown, according to the researchers themselves.

However, new technology made it possible to study the inaccessible depths with greater accuracy than previously possible, and the team used a remotely operated vehicle called the SuBastian to collect images and map the seafloor, according to NPR.

According to Jyotika Virmani of the Schmidgt Ocean Institute, only 26 percent of the seafloorhas been mapped at such high resolution, and she emphasises that each new expedition “brings into focus a little more of the unknown seabed and life on our home planet,”.

.

The Institute’s two previous expeditions to Nazca and the neighbouring Salas y Gómez mountain range, in January and February, which led to the discovery of 150 species and subspecies that were either completely unknown or had never been observed in the area before.

“Safeguarding these pristine environments”

As both mountain ranges are located in the high seas and outside the jurisdiction of any country, their ecosystems are described as highly vulnerable to the effects of alleged climate change, plastic pollution, overfishing and potential deep-sea mining.

However, under a UN treaty, yet to be ratified, the region of the Nazca and Salas y Gómez mountain ridges is a candidate to become a “marine protected area” – a legal designation that could lead to increased protection for marine life in the area from commercial fishing or oil drilling.

Upon concluding our third expedition to the region, we’ve explored around 25 seamounts on the Nazca and Salas y Gómez Ridges, said Tomer Ketter, marine engineer at the Schmidt Ocean Institute, in the press release.

– We hope the data gathered from these expeditions will help inform future policies, safeguarding these pristine environments for future generations.

TNT is truly independent!

We don’t have a billionaire owner, and our unique reader-funded model keeps us free from political or corporate influence. This means we can fearlessly report the facts and shine a light on the misdeeds of those in power.

Consider a donation to keep our independent journalism running…

New study of national park: Wolves helped nature recover

Biodiversity

Published 17 August 2025
– By Editorial Staff
A wolf in Yellowstone National Park during 2016.
2 minute read

The return of wolves to Yellowstone National Park has contributed to an ecological recovery after decades of damage to plant and animal life. Now a new study shows that the park’s aspen populations are finally beginning to reestablish themselves – apparently thanks to the predator’s impact on the ecosystem.

During the 1930s, wolves were completely eradicated from Yellowstone National Park in the Rocky Mountains of the United States. This had major consequences for the ecosystem – as the deer population increased dramatically and began grazing intensively in the park. This led to a sharp decline in trees like aspens. Aspen is considered a keystone species in the park, and its decline affected other species that depend on the deciduous trees, including beavers, insects and birds.

In the 1990s, wolves were reintroduced to the park, which immediately changed the deer’s behavior – not only by taking some as prey, but primarily by causing the deer to stop grazing for long periods in the same places. The result was that vegetation recovered, which has had a major effect on biodiversity.

Remarkable change

Now researchers have documented the first new generation of aspens in the park. In the study, which was published in Forest Ecology and Management, researchers argue that the wolf’s return has contributed to the species’ recovery.

The reintroduction of large carnivores has initiated a recovery process that had been shut down for decades, says the study’s lead author Luke Painter, who teaches ecology and conservation at OSU College of Agricultural Sciences, in a press release. About a third of the 87 aspen stands we examined had large numbers of tall saplings throughout, a remarkable change from the 1990s when surveys found none at all.

Another third of the examined stands had areas with tall saplings that were growing up to become new trees in the canopy layer, while the rest were still being held back by grazing. Researchers believe this may be due to bison increasing in certain parts of the park. The fact that stands with many tall saplings have low levels of grazing, while others continue to be held back, suggests that aspen recovery depends on an ecological chain reaction where predators affect plant life by reducing the number of grazing animals – rather than on factors like climate or soil fertility.

This is a remarkable case of ecological restoration, says Painter. Wolf reintroduction is yielding long-term ecological changes contributing to increased biodiversity and habitat diversity.

Radioactive method ready for use against poaching

Biodiversity

Published 11 August 2025
– By Editorial Staff
Rhinos are being injected with radioactive material.
2 minute read

After an extended testing period, the Rhisotope project in South Africa is now in full operation. The technology, which makes rhino horns both traceable and unattractive to poachers, can now be used on a large scale.

It was in June last year that researchers injected radioactive material into the horns of 20 rhinos in South Africa. The project, called the Rhisotope Project and led by the University of the Witwatersrand (Wits University) in South Africa, began six years ago with the idea of stopping poaching of the endangered rhinos. The concept was that the radioactive material should be detectable at border controls, but also becomes toxic to consume. Furthermore, the radioactive material should be harmless to the rhinos.

Now the project has been thoroughly tested and reached full operational status, writes Wits University in a press release.

We have demonstrated, beyond scientific doubt, that the process is completely safe for the animal and effective in making the horn detectable through international customs nuclear security systems, says James Larkin, professor at Wits University and scientific director of the Rhisotope Project.

Sold as “medicine”

Rhino poaching is a recurring problem, particularly in South Africa. Last year, 420 rhinos were killed illegally in the country, where the horns often end up on the black market. They are often sold as medicine and can be worth more than gold. The treatment is carried out by sedating the rhino and then drilling a small hole in its horn. Two small isotopes with radioactive material are then inserted.

This means in practice that private and public rhino owners, non-governmental organizations and conservation authorities can contact the Rhisotope Project to treat their rhinos with the radioactive material.

Our goal is to deploy the Rhisotope technology at scale to help protect one of Africa’s most iconic and threatened species. By doing so, we safeguard not just rhinos but a vital part of our natural heritage, says Jessica Babich, CEO of the Rhisotope Project.

Swedish crayfish threatened with extinction

Biodiversity

Published 10 August 2025
– By Editorial Staff
From 30,000 population to under 600 – the noble crayfish is critically endangered.
2 minute read

Crayfish plague continues to devastate Sweden’s native noble crayfish. In just a few decades, populations have plummeted from around 30,000 to fewer than 600 – and the trend continues downward.

The biggest culprit is illegal releases of non-native signal crayfish, which are themselves heavily fished and can also be affected by the disease.

The signal crayfish, which spreads the disease, has increased dramatically and today exists in between 10,000 and 15,000 populations. In Värmland, a province in western Sweden, illegal releases have been documented in as many as 239 bodies of water between 2000 and 2024.

— Noble crayfish populations in Värmland and Dalsland were 430 in the early 2000s; today only 60 remain, says Lennart Edsman, crayfish expert and researcher at the Freshwater Laboratory at the Swedish University of Agricultural Sciences (SLU), to Swedish news agency TT.

When August and crayfish season arrives, the question arises of which species the environmentally conscious consumer should choose for their crayfish party.

— You should eat noble crayfish if you can afford it. That gives them value that makes them worth protecting. And you should eat signal crayfish too, but absolutely not spread them, Edsman believes.

Imports worth hundreds of millions

Swedes eat far more crayfish than the country can produce. Between 70 and 80 percent of the crayfish on tables are imported. In 2023, imports amounted to a value of €40 million, while Swedish crayfish were sold for €27 million.

Previously, the largest portion of imports came from China, but today Spain, Turkey and also Egypt dominate the Swedish market.

Most Swedish-caught crayfish are signal crayfish, with a large share coming from lakes Vättern and Hjälmaren in central Sweden. Recently, however, many consumers have complained that the crayfish have become smaller.

— This is partly because fishing has been too intensive. There is great demand for crayfish in this country. Sweden is quite extreme when it comes to crayfish consumption, Edsman explains.

The signal crayfish originates from western North America, as does crayfish plague – a parasitic algae fungus. Although the species is more resistant than the noble crayfish, it is not immune to the disease.

How the signal crayfish took over

The signal crayfish originally comes from western North America and was introduced to Sweden in the 1960s as a way to replace the noble crayfish, which had been severely affected by crayfish plague at the time. The idea was to preserve crayfish fishing and its economic benefits, since the signal crayfish is more resistant to the disease than the noble crayfish.

The problem is that the signal crayfish carries the very crayfish plague – a parasitic water mold – that is deadly to the noble crayfish. Although the invasive species itself can be affected, it is significantly more resilient, which means it functions as a disease carrier and accelerates the decline of the noble crayfish.

Since its introduction, the signal crayfish has spread rapidly and is now found in between 10,000 and 15,000 populations across Sweden. Many of these have resulted from illegal releases. The consequence is that the noble crayfish has declined from around 30,000 populations to fewer than 600 throughout the country.

New giant insect discovered in Australia

Biodiversity

Published 5 August 2025
– By Editorial Staff
Acrophylla alta lives in a very limited area of high-altitude rainforest.
2 minute read

Researchers have discovered a new species of stick insect. The insect, which can grow to almost half a meter long, is said to potentially be Australia’s heaviest.

It was at high altitude in the Atherton Tablelands in northern Queensland, Australia, that the stick insect was found. Researchers at James Cook University helped identify the new species, which they call Acrophylla alta. The most remarkable thing about the insect is its length and especially its weight: It can grow 40 centimeters long and weigh about 44 grams, which is slightly less than the weight of a golf ball.

There are longer stick insects out there [in the region], but they’re fairly light bodied, says Professor Angus Emmott in a press release. From what we know to date, this is Australia’s heaviest insect.

It was through the eggs that researchers were able to identify that it was a new species, since no species of stick insects have identical eggs.

They’ve all got different surfaces and different textures and pitting, and they can be different shapes, he says.

It is not uncommon for new insect species to be discovered, but the reason this heavy insect has gone unnoticed is likely due to its habitat. These insects live in a limited area of high-altitude rainforest and live high up in the tree canopy. Emmott also believes it is precisely their living environment that has made them so large.

It’s a cool, wet environment where they live, he says. Their body mass likely helps them survive the colder conditions, and that’s why they’ve developed into this large insect over millions of years.

Our independent journalism needs your support!
We appreciate all of your donations to keep us alive and running.

Our independent journalism needs your support!
Consider a donation.

You can donate any amount of your choosing, one-time payment or even monthly.
We appreciate all of your donations to keep us alive and running.

Dont miss another article!

Sign up for our newsletter today!

Take part of uncensored news – free from industry interests and political correctness from the Polaris of Enlightenment – every week.